
Last month we discussed client-side programming,
especially JavaScript. A few months ago we discussed
web services. We’ve also spent most of our time

studying different aspects of server-side programming. This
month, we’re going to tie all of those concepts together in

looking at a very powerful programming technique known as AJAX.

launching online

By Russ McGuire - russ.mcguire@gmail.com

Armed with AJAX

September 2010Christian Computing® Magazine 29

What is AJAX?
 AJAX is an acronym standing for Asynchronous
JavaScript and XML. Let’s look at each part of this name to
understand what’s involved:
 Asynchronous: Asynchronous literally means Not Syn-
chronous. A synchronous system works in a fixed, ordered
way. One thing happens, followed by another, in pre-de-
termined fashion. Therefore; asynchronous means that the
program can operate with independent actions not waiting to go
in a specific order.
 JavaScript: We studied JavaScript at length in last month’s
column. JavaScript is a client-side programming language that
runs inside the web browser. (Note that the capabilities repre-
sented by AJAX can actually be achieved with any client-side
programming language – not just JavaScript.)
 XML: eXtensible Markup Language is a set of rules for
encoding a document in machine-readable form. XML is
extensible, meaning that specific types of documents can be
defined using the structure of XML. These document types
are defined with a Document Type Definition (DTD). XML is
organized as markup and content, with markup tags contained
in < brackets >. If you’re familiar with HTML, this is prob-
ably starting to sound familiar, and in fact HTML has become a
subset of XML defined by a DTD. The first line in each HTML
page at ccmag.com is: <!DOCTYPE html PUBLIC “-//W3C//

DTD XHTML 1.0 Transitional//EN” “http://www.w3.org/TR/
xhtml1/DTD/xhtml1-transitional.dtd”> which tells us that this
website is using XHTML 1.0 Transitional which is defined in a
DTD at the w3.org website.
 The important thing about XML as it relates to AJAX is
that it provides a language for two programs to talk to each
other. (Note that the capabilities represented by AJAX can
actually be achieved without using XML – as long as the mes-
sages can be understood by each program.)
 So, what does it mean when we put all these things to-
gether?
 It means that there are programs running inside a web
page which are communicating in an asynchronous manner
with server-side programs. This means that the web page can
change dynamically, probably based on user interaction, and
the content of the page can be updated with information com-
ing from the server.

Why use AJAX?
 A popular example of AJAX is Google’s Gmail service.
Gmail uses AJAX to mimic the capabilities of a standalone cli-
ent program (like Microsoft Outlook) within a web application.
When you click on Inbox, a portion of the page redraws listing
the messages in the inbox, and when you click on an individual
message, a portion of the page redraws displaying the message.

30September 2010Christian Computing® Magazine

 Technically, behind the scenes, Gmail
is using AJAX to fetch the list of messages
or the body of the message and display it.
But to the user, the end result is simplicity
and ease of use. It’s comfortable and natu-
ral, not like most web interfaces. That’s the
beauty of AJAX, and why more and more
web sites are using it.

How to deploy AJAX
 AJAX requires you to write two
programs – the client side (probably in
JavaScript) and the server side (in our case,
we use PHP).
 Writing the client side program is
easiest using a framework like jQuery.
JQuery includes a full suite of methods and
functions to simplify implementing AJAX.
The simplest is the .load() method which
fills the specified page element with content
retrieved from the specified url. This
method is good for loading a page with
static data – for example in implementing a
tabbed interface or an interface for stepping
through multiple pages of content.
 A more likely implementation would
use a function like .get() or .post() to pass
data to the server as if a form had been submitted. The returned
data can then be copied into an element on the web page. This
can be used, for example, to load a specific Bible passage into a
section of the web page when the user makes a selection with-
out having to reload the entire web page.
 An even more sophisticated approach is to use the .getJ-
SON() function to retrieve back from the server structured data
that can be used to manipulate elements on the page. For ex-
ample, I’ve used this approach to populate known churches in
a pull-down list (<SELECT> element) based on a city and state
input by the user. (JSON stands for JavaScript Object Notation
and is a simpler alternative to XML.)
 Writing the server side program is pretty straightforward.
In general, it works just like any other web server program,
simply outputting the text to be returned to the client side pro-
gram. For the .load() method, the server side “program” could
even be as simple as just an HTML document. For the .get() or
.post() function, the server side program would be very similar
to a normal form handling program. For a .getJSON() function,
the server-side program has to take the extra step of formatting
the output as JSON objects. Even in the most complex imple-
mentations, the server side program is typically the easiest part
of an AJAX implementation.
 One really important limitation to be aware of is that, for
good security reasons, you generally can only use AJAX to

communicate with a server side program in the same domain
as the client side web page. If you’re trying to access a web
service in another domain (for example the Living Stones web
service we discussed in June), this is easily resolved by writing
a simple server side program on your web server that passes
along the request to the web service and then passes along the
response to the client side AJAX program.
 The most challenging aspect of implementing AJAX is
testing and troubleshooting. Since we can’t “see” the interac-
tion between the client and server components, it can be very
challenging to figure out why an AJAX solution isn’t working.
But what fun is programming without a few challenges to work
through?
I hope and pray that this article will help you in making your
websites better serve your visitors to the glory of God.

Russ McGuire is an executive for a Fortune 100 company and
the founder/co-founder of three technology start-ups. His latest
entrepreneurial venture is Hschooler.net (http://hschooler.net),
a social network for Christian families (especially home-
schoolers) which is being built and run by three homeschooled
students under Russ’ direction.

http://www.ccmag.com/view/pdf_ad.php?recordID=93
http://lstones.com
http://www.ccmag.com/page/index.php?pageid=16&articleid=322

